Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

End Semester Exam, DEC2023

Max. Marks:100

M.Tun (SH-Cy) Lund Duration: 3h

uction Structural Engineering Power Electronics an

MTech Programme	Construction	Structural Engineering	Power Electronics and
SEM-1	Management		Power Systems
Course Code of Research Methodology	PC-MTCM103	PC-MTSE103	PC-MTPX103

Instructions:

- 1. Question No 1 is compulsory.
- 2. Attempt any four questions out of remaining six.
- 3. Draw neat diagrams
- 4. Assume suitable data if necessary
- 5. Use of Standard Tables permitted

	1
$\sim V \sim V \sim$	/ /
, ,	1

Question No		Max Marks	co	Module
QÍA	What are the research avenues in your branch of engineering? What may be research approach and methodology to deal with those? Draw research methodology flowchart to showcase. Explain how to conduct the literature survey in carrying out research? What is the difference between Invention, Discovery and Research?	10	COI	M1
Q1B	Explain the Mechanics of Writing a Research Report with appropriate examples. What are the contents of research report? What precautions are to be taken while writing the research report? What ethical practices are expected to be adopted? State different research approaches utilized in industries and Conceptualize the research process.	10	COI	M2
Q2A	The following are the number of departmental stores in 15 cities: 35, 17, 10, 32, 70, 28, 26, 19, 26, 66, 37, 44, 33, 29 and 28. If we want to select a sample of 25 stores, using cities as clusters and selecting within clusters proportional to size, how many stores from each city should be chosen? (Use a starting point of 5).	10	CO2 CO3	M4
Q2B	A population is divided into three strata so that N1 = 6000, N2 = 3000 and N3 = 4000. Respective standard deviations are: s1=13, s2=15 and s3=9. How should a sample of size n = 82 be allocated to the three strata, if we want optimum allocation using disproportionate sampling design? If the cost for strata is 2500, 1500, 1800 what can be cost disproportionate sampling design?	10	CO2 CO3	M4
Q3A	Researcher conducted experimental investigations on concrete cubes, to study the influence of fly ash, GGBS and glass waste powder (GWP) individually, on the compressive strength of concrete. The cubes were casted for M30 grade of concrete and by random sampling method, tested after 28 days curing. For cubes in Group I, 30% fly ash was added, for Group II, 30% GGBS was added and in Group III, 30% GWP was added. The 28 days compressive strengths of cubes in N/mm² are given below. Check whether the mean compressive strength of the 3 different groups is same or not. Group I – 31, 32, 31, 35, 29, 27 Group II – 36, 29, 33, 29, 34 Group III – 33, 34, 29, 32, 33, 36, 26	10	CO2 CO3	M5
)3B	We want to test on the basis of sample size 35 determinations and at 0.05 level of significance whether the thermal conductivity of a certain kind of plate is 0.34 units, as has been claimed. The mean of sample is 0.343. From the information gathered in similar studies, we can expect that the variability of such determinations is given by $\sigma = 0.01$.	10	CO2 CO3	M4 M5

-044	What do you mean by stratificat		VA 100 d 600 cV 1/2					
	carry out stratification using con	ion: why it is	to be done? Ex	cpiain How	ao you	10	CO1	M3
	Refer the given data Identify the	iputer (CO2	M5
	Refer the given data, Identify the	vital factor to	control defects	S.				M7
!	Staff No.01 Delects		<u> </u>	. <u></u>				
	A 46	Snint I	TO2	Temp. High				
	B 22	i i	103	Low			İ	
	C 5	111	104	High	_	1	}	
	E 10	- 1 -	102	Medium Low				
	F 26	111	104	High		1		
	G 188 H 130		102	Medium	□			
	1 7		103	Low High				1
	E 12		102	High				İ
	F 2	tt sii	103	Low			1	
	A 22		104	High High				Į
	F 12	TI .	103	Low				
	D 10	ili I	104	High			1	
	1-2-1		101	Low			ł	
Q4B	A data of 350 Life Cycle Test in association between type of machine suggest an association between T and R?	nines and accep are as follows	otability of Gua . At alpha =0.	age R and R .05 do thes	t. The data	10	CO2 CO3	MI M3
		Automatic machines	SemiAutoma machines	atic Tot	al			1
	Acceptable Guage R&R	19	31	50				
	Not Acceptable Guage R&R	171	131	302	2			
	Total	190	162	352		ļ		
Q5A	What do you mean by Causal Re appropriate examples for depicting regression analysis? Explain coefficients adj.	ng causal relat	ionships. What	t do you me	an by	10	CO2 CO3	M1 M5
Q5B	Write short note on the following	terms.				10	CO2	M4
Qэв	I. Normal Distribution	WILLIS.					CO3	M5
	•					1		
	II. Type I error							1
	III. Type II error IV. Confidence Interval							1
	V. Level of Significance							
	VI. Test Statistic							
	VII. T distribution							
	VIII. F distribution					1		
	IX. Census						İ	1
	X. Sampling							
Q6A	A flow chart describing copyrigh	t registration p	rocess in India	l.		10	CO2	M5
	V - · · ·	_					CO3	
Q6B	Differentiate among Patent Trade	mark and Cop	yright.			10	CO2	M6
ζ ₀ 2							CO3	M7
07A	Prepare the process flow chart for	r obtaining net	ent in India			10	CO2	M6
Q7A	Liebate me biocess now cuart to	. Journing par	In MINNIN			1	CO3	M7
OTP	Prepare a note on Trademark bas	ed on followin	o nointe			10	CO2	M6
Q7B	1.Meaning 2.Examples 3.Period	ed ou tonowni	g ponto				CO3	M7
	4. Specific rules in India							
	5. Procedure to get the trademark	registered and	approved.					
	<u> </u>	**					i	1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM EXAMINATION December 2023

Program:

M.Tech-Structures Sem 1

Duration: 3 Hrs

Course Code: PC-MST 102

Maximum Points: 100

Course Name: Advanced Theory of Structures

Semester:I

MIMMY

Q.No.	Questions	Points	co	BL	Module No.
	Analyse the following continuous beam using conventional stiffness method E9 = 8000 kN - w ²				
	2.5 m & 2.5 m 20km/m 50km 50km 4 5 m 4 7 60 KM				
Q1	~ 160Ki	20	2	3	
	Analyse the following plane frame using conventional stiffness method 80kN 60kN 60kN				
	30kN/8 SW ET = 8000 KN		2	3	
Q2	SOKN	20			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM EXAMINATION December 2023

	END SEM EXAMINATION December	2023			
Q3	Analyze truss using stiffness method. A E = 5000 kg Suppord A Suppord A Suppord A Suppord A Suppord Suppord A Suppord A Suppord Suppor	*	1	3	
	Analyse the following beam using Flexibility method.	320	-		
	20kN/m 20kN/m		1	3	
Q4	Asm Ar 6M A	20			
Q5	Derive the expression of deflection for the infinite beam on elastic foundation subjected to a concentrated load at midspan	20	4	3	
Q6	A hook carries a load of 7.5kN and the load line is at a distance of 20mm from the inner edge of the section which is trapezoidal. The load line also passes through the centre of curvature of the hook. The dimensions of the central horizontal trapezoidal section are: inner width= 30mm; outer width=15mm; depth=30mm. Calculate the maximum and minimum stresses. Also plot the variation of stress across the section.	20	3	3	
	Analyse by stiffness method the pin jointed frame as shown in figure due to applied direct loads as well as due to lack of fit caused by bars 1 and being too short by 5mm. Find complete force and displacement response.	20			
	1 D 20kD/m 2 60kD/m 30kD/m A E 2 A E 3 A		2	3	
)7		20		İ	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examination = December 2023

Program: M. Tech Civil Engineering - Structures Lauf Duration: 3 Hours

Course Code: PE-MTSE113

Maximum Points: 100

Course Name: Design of Prestressed Concrete

Semester: 1

Structures 7

Notes:

• Attempt any 5 main questions.

Answers to all sub-questions should be grouped together

Draw neat sketches wherever possible

Assume suitable data if missing and state the same clearly.

• Use of IS 1343 is allowed

Q.No.	Quostions	Points	СО	BL	Module
1.a)	A prestressed concrete beam ABC has cross section dimensions 350x800mm and effective prestressing force of 1000kN. The beam has a simply supported span(i.e.BC) of 7m and it has 2.5m overhang on one side (i.e. AB). It carries a live load of 10kN/m on entire span. Using load balancing concept, determine the eccentricities at critical points to balance the dead load and live load and sketch the cable profile. (Consider density of concrete as 25kN/m³)	10	1	3	02
1.b)	Explain in detail - Full, limited and partial prestressing	05	1	1,2	01
1.c)	Explain the need of high strength materials in prestressed concrete structures	05	1	1,2	01
	Calculate the flexural capacity of a post-tensioned (bonded) I girder having the following properties: Flange = (1200x250)mm Web = (300x1800)mm Area of cables = 2500mm² fp = 1600MPa Effective depth = 2050mm fck = 40MPa	10	1	3	03
2.b)	Design the shear reinforcement at quarter span for a simply supported beam of rectangular cross section 300mmx900mm and span 12.5m. It carries a live load UDL of 7kN/m(unfactored). It is prestressed by a straight cable that is having eccentricity of 250mm	10	2	4	03

SA ADAR PATEL COLLEGE OF ENGINEERING

(Gove nimer Aided Autonomous Institute) Munshi Nagar. / ndheri (W) Mumbai - 400058

End Semester Examination - December 2023

		prestress in c	cable = 1100MPa of PT steel = 160 for reinforcement					
	A simply with 2 cal	supported poles having a	post tensioned be cross section of 3 ed from a single e	am of span 18	m m of		-	
	Gu	Profile	Eccentricity at mids an	Eccentricity at support	1			
3.b) six fo en De sup Eft Liv fek fei 4. Es Use of requisite A 1: 2500 9000 1000 1000 1000 1000 1000 1000 1	Cable 1	Parabolic	250mm (below N.A.)	50mm (above N.A)	11	1		
3.a		Straight	350mm(below	350mm(below		1	3	02
	co-efficient at transfer 4.2mm. Es Calculate th and anchora	for wave eff of prestress 210kN/mm e % losses d	section area of Pa. Co-efficient for fect = 0.0015/m. Solution = 28days. And Pack Pack Pack Pack Pack Pack Pack Pack	300mm and an or friction = 0.5; Age of concrete chorage slip = . rtening, friction				
3.b)	located at 33 size of end 1 force of 800 end zone reir	500mm from to block is 300x kN is applied forcement.	post-tensioned by post-tensioned by post-tensioned by post-tension by post-ten	bearing plates spectively. The al pre-stressing ge. Design the	08	3	3,5	04
4.	Effective spa Live load = 1 fck = 45MPa fci = 30MPa Es = 210kN/n Ec = 31.6 kN/ Assumed loss Use 8mmø str of cables is required, pressketch of the c	n = 15m n = 15m 0kN/m nm ² mm ² % = 25% rands for cab 1500MPa. (stressing for able profile	les. The character Calculate the siz ce, eccentricity.	istic strength e of section Draw neat	20	2	4	05
a)	900mmX200m	m precast stem. The stem	ed composite bear em and a cast-in-s m is a post ter force of 1000kN.	situ flange of	15	1	3	06

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination - December 2023

	resultant	ipport a live	load of 10kN/ration in the beam	of stem. The beam n. Determine the if the beam is a)				
5.b)	Explain the sections u	ne effect of psing principal	prestressing on sl l stress concept.	near resistance of	05	1,3	2	03
	b) A simp	beam due centricities at (A)	to parabolic pre end = e ₁ and at m bove CG) prestressed beam	on in a simply estressing profile idspan =e ₂ (Below CG) of cross section of following cable				
	profile:	Profile Parabolic	Eccentricity at midspan 250mm	Eccentricity at support 50mm (above				
6.	Cable 2	Straight	(below N.A.) 350mm(below NA)	N.A) 350mm(below NA)	20	1	3	03
	500mm² a Losses = 2 Calculate t i)	ind it is ini 5% he : Instantaneou prestressing i	10kN/m. The area tially tensioned s deflection due force effection if the creation is the creation if the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation is the creation in the creation in the creation is the creation in the creation in the creation is the creation in the creation in the creation is the creation in the creation in the creation is the creation in the creation in the creation is the creation in the crea	to dead load +				
7.	The cable shown in fi	profile for a	two span continu The prestressing f	force is 1500kN.	20	3	4	07

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai = 400058

Re-exam - Feb 2024

Program: M.Tech Civil Engineering - Structures Jem 1 Duration: 3 Hours

Course Code: PE-MTSE113

Maximum Points: 100

Course Name: Design of Prestressed Concrete

Semester: 1

Structures

Notes:

· Attempt any 5 main questions.

Answers to all sub-questions should be grouped together

• Draw neat sketches wherever possible

Assume suitable data if missing and state the same clearly.

Use of IS 1343 is allowed

Q.No.	Questions	Points	СО	BL	PI
1	 a) What is pretensioning and post-tensioning? b) Explain how prestressing affects deflection of beams. What are the factors affecting long term deflection? c) Explain what do you mean by full prestressing, limited prestressing and partial prestressing d) Calculate the stress in extreme fibres at support for a cantilever beam having 5m span, (250x500)mm cross section and supporting a UDL of 15kN/m on full span. It is prestressed with a straight cable having eccentricity 250mm above the CG. 	20	1	1,2	2.2.4
2.a)	A pretensioned concrete beam of size 250 mm X 600 mm has an effective cover to tendon 200 mm. Area of prestressing steel is 565 mm2, fck = 40 N/mm2, fp = 1600 N/mm². Calculate the ultimate flexural strength of the section. fck = 40MPa	10	1	3	3.1.4
2.b)	Design the shear reinforcement at one third span for a simply supported beam of rectangular cross section 300mmx700mm and span 10m. It carries a live load UDL of 8kN/m(unfactored). It is prestressed by a straight cable that is having eccentricity of 250mm fck = 40MPa Effective prestress in cable = 1100MPa Characteristic strength of PT steel = 1600MPa Use Fe415 grade steel for reinforcement.	10	2	4	3.1.4

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-exam - Feb 2024

	with 2 cab	les having a	cross section of 3	eam of span 18m 300mmX 900mm and in the order of				
		Profile	Eccentricity at midspan	Eccentricity at support				
	Cable 1	Parabolic	25mm (below N.A.)	0mm				
3.a)	Cable 2	Straight	350mm(below NA)	350mm(below NA)	15	1	3	2,2,1
3.47	initial tensi co-efficient at transfer of Es = 210kN Calculate the and anchora b) Calculate support due on full span	on of 1200M for wave effor prestress = 1/mm ² , Ec = 3 he % losses age slip e the stress is to prestress	Pa. Co-efficient ffect = 0.0015/m. = 28days. Anchor 0kN/mm ² . due to elastic shown extreme fibres and an imposed	350mm ² and an for friction = 0.5; Age of concrete rage slip = 4mm. Ortening, friction at mid span and load of 10kN/m	13		3	2,2,1
	PSC beam a	as compared	to that of an RCC		05	1,3	2	1.4.1
4.	supported) in Effective sp Live load = fck = 40MP fci = 30MPa Es = 210kN Ec = 31.6 kl Assumed load Use 8mm of cables in required, prozone. Draw	for the follow an = 14m 18kN/m a /mm ² N/mm ² ss % = 30% strands for constraints for	ables. The charac Calculate the rce, eccentricity f the cable profile	size of section with safe cable	20	2	4	3.1.4 3.2.1
5.a)	250mmX600 500mmX300 subjected to = 26.5%. The soffit of stern 10kN/m. De	Omm precast Omm. The san initial precast the tendons as m. The bear termine the r	orted composite to stem and a cast- stem is a post estressing force of re provided at 1: in has to support esultant stress dis- propped; b) propp	in-situ flange of tensioned unit of 800kN. %loss 50mm from the ta live load of stribution in the	20	1	3	2.2.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbal – 400058

Re-exam - Feb 2024

	Draw neat sketches to show the variations of stresses at each stage				
6.a)	Derive the expression for deflection due to prestress when the profile is parabolic having zero eccentricity at ends and "e" at mid span for a simply supported beam A simply supported prestressed beam of cross section 450mmX1100mm and span 15m has a straight profile of cable with eccentricity of 400mm below N.A. It carries a live load of 5kN/m. The area of cable is 400mm² and it is initially tensioned to 1350N/mm². % loss = 28% Calculate the: i) Instantaneous deflection due to dead load + prestressing force ii) Long term deflection if the creep coefficient is 1.6 Es=210kN/mm²; Ec =35kN/mm²	10		3	2.2.1 1.4.1
6.b)	The end block of a post-tensioned beam has three anchorages with 300 mm square bearing plates as shown in figure. An initial pre-stressing force of 900 kN is applied to each anchorage. Design the end zone reinforcement. \$\frac{1}{2}\$ 50 \$\frac{1}{2}\$ 100 \$\frac{1}{2}\$ 50 \$\frac{1}{2}\$ 50 \$\frac{1}{2}\$ 50	10	2	4	3.1.4 3.1.6
	The abla C1 C				
7.a)	The cable profile for a two span continuous beam is as shown in figure below. The prestressing force is 1250kN. Locate the pressure line due to prestressing force and the shown loads	20	3	4	2.3.2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations- December 2023

Program: M.Tech. (Structural Engineering) Lew 1

Duration: 3 Hours

Course Code: PE-MTSE121

Maximum Points: 100

Course Name: Program Elective-II: Non Linear Analysis

Semester: I

Instructions:

Attempt any FIVE questions out of SEVEN questions.

Answers to all sub questions should be grouped together.

Figures to the right indicate full marks.

• Assume suitable data if necessary and state the same clearly.

Q.No	Questions	Points	со	BL	PI
Q1(a)	State and explain uniqueness theorem used in plastic analysis.	(05)	1	1,2	1.3.1 2.1.3
Q1(b)	What are the secondary design problems to be considered while using the plastic theory of bending?	(05)	2	2	2.1.2 2.2.3
Q1(c)	What is a beam column? How is it different from a beam and a column?	(05)	3	2	1.3.1
Q1(d)	Write a note on the modes of buckling of a member having thin walled symmetrical cross section.	(05)	4	2	1.3.1
Q2(a)	Find the length of the plastic hinge for a simply supported beam of rectangular cross section and span L, subjected to a central point load of W. Also show that the shape/variation of plastic hinge in the above case is a parabola.	(10)	1	3,4	2.1.2
Q2(c)	Find the shape factor of an unsymmetrical I section with following details: Top flange width = 250 mm & thickness = 25 mm Bottom flange width = 350 mm & thickness = 35 mm Depth of web = 300 mm and thickness of web = 30 mm	(10)	1	3,4	2.1.3 2.2.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations- December 2023

Q3(a)	For the frame shown in figure below, find the collapse load factor. Loads shown in the figure are working loads and the plastic moment capacity of each member in kN-m is also shown in the figure.	(15)	1	3,4	2.1.3 2.2.3
	50 kN 90 kN 3 m 3 m 4 m 4 m 75 kN-m 100 kN-m 100 kN-m				
Q3(b)	Calculate the plastic moment capacity of a beam of rectangular cross section 100 mm x 200 mm if $\sigma_y = 250 \text{ N/mm}^2$. If the cross section is subjected to an axial force such that P/P _P = 0.5, find the reduced plastic moment capacity of the section. Also state the percentage loss in the plastic moment capacity of the section due to the axial force.	(05)	2	2	2.1.2 2.2.3
Q4(a)	A continuous beam is subjected to working loads as shown in figure below. If $M_P = 75$ kN-m, calculate the (true) load factor for the beam. 80 kN 30 kN 12 kN/m A 2 m	(10)	I	3,4	2.1.3 2.2.3
Q4(b)	Write a note on effect of shear force on plastic moment capacity of a flexural member.	(10)	2	1,2,	1.3.1 2.1.3
Q5(a)	A column of length L and pinned at both the ends is under the action of an axial compressive load P. Find the critical load by finite difference method if the flexural stiffness of the member varies according to $EI(x) = EI_0 \qquad 0 \le x \le L/4$ $= 2EI_0 \qquad L/4 \le x \le 3L/4$	(10)	3	3,4	2.2.3 2.4.1
	$= EI_0 \qquad 3L/4 \le x \le L$				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examinations- December 2023

of if	column of length L and pinned at both the ends is under the action f an axial compressive load P. Find the critical load by energy method the flexural stiffness of the member varies according to $EI(x) = EI_0 \qquad 0 \le x \le L/4$ $= 2EI_0 \qquad L/4 \le x \le 3L/4$	10)	3	3,4	2.2.3 2.4.1
	$= EI_0 \qquad 3L/4 \le x \le L$			3,4	2.2.3
1 1	A beam column is subjected to loads as shown in the figure below. Derive the expression for the deflection at a point between A and B at a distance of 'x' from support A.	(10)	3	3,4	2.4.1
	$P \xrightarrow{A} \qquad \qquad \qquad P$	1000	4	- 2	1.3.
Q6(b)	How is the structural behavior of member having a solid cross section different from that of a thin walled open cross section when subjected to axial load? Explain	+	-	1	
	Write a note on St. Venant's torsion and warping torsion.	(96)	4	2	
Q6(c)	Derive the governing differential equation for the torsional buckling o	f (14)	,	4 1,3	2, \ 1.3 2.1
	column with symmetrical cross- section.	(06	5)	1,	,2 1.3 2.1
Q7(b)	Write a note lateral buckling of beams		-	manus bearing	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-Examinations- February 2024

Program: M.Tech. (Structural Engineering)

Duration: 3 Hours

Maximum Points: 100

Course Name: Program Elective-II: Non Linear Analysis

Semester: I

Instructions:

Course Code: PE-MTSE121

Attempt any FIVE questions out of SEVEN questions.

Answers to all sub questions should be grouped together.

Figures to the right indicate full marks.

• Assume suitable data if necessary and state the same clearly.

Q.No	Questions	Points	СО	BL	PI
Q1(a)	What are the advantages and disadvantages of plastic analysis over elastic analysis?	(05)	1	1,2	1.3.1 2.1.3
Q1(b)	State and explain lower bound theorem.	(05)	1	2	2.1.2 2.2.3
Q1(c)	Write a note on different approaches for the buckling analysis of a column.	(05)	3	2	1.3.1
Q1(d)	In case of lateral buckling of rectangular beam in pure bending, write the expression for critical stress and explain the terms involved in the expression.	(05)	4	2	1.3.1
Q2(a)	A propped cantilever of span 5m is subjected to a uniformly distributed load of 12kN/m on the entire span of the beam. Find the load factor at failure if the plastic moment capacity of the beam is 60kN-m.	(10)	T	3,4	2.1.2
Q2(c)	Find the shape factor of an unsymmetrical I section with following details: Top flange width = 350 mm & thickness = 30 mm Bottom flange width = 250 mm & thickness = 25 mm Depth of web = 250 mm and thickness of web = 25 mm	(10)	1	3,4	2.1.3 2.2.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Munshi = 400058

For the frame shown in figure below, find the collapse load factor. Loads shown in the figure are working loads and the plastic moment capacity of each member in kN-m is also shown in the figure.		1	3,4	2.1.3
30 kN 3m 3m 100 100 50 kN 100 4m 3m 3m				
100 125 125 4m				
A continuous beam is subjected to working loads as shown in figure below. If M _P = 80 kN-m, calculate the (true) load factor for the beam.	(10)	1	3,4	2.1.3 2.2.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	(10)	2	1,2,	1.3.1 2.1.3
of an axial compressive load P. The flexural rigidity of the column varies uniformly from EI at either end to 2EI at the centre. Find the	(10)	3	3,4	2.2.3 2.4.1
of an axial compressive load P. Find the critical load by energy method if the flexural stiffness of the member varies according to	(10)	3	3,4	2.2.3 2.4.1
	A continuous beam is subjected to working loads as shown in figure below. If M _P = 80 kN-m, calculate the (true) load factor for the beam. 25 kN/m 100 kN 50 kN 25 kN/m 100 kN 50 kN A 5 m, 2M _P 2M _P M _P Write a note on effect of axial force on plastic moment capacity of a flexural member. A column of length L and pinned at both the ends is under the action of an axial compressive load P. The flexural rigidity of the column varies uniformly from EI at either end to 2EI at the centre. Find the critical load by finite difference method. A column of length L and pinned at both the ends is under the action of an axial compressive load P. The flexural rigidity of the column varies uniformly from EI at either end to 2EI at the centre. Find the critical load by finite difference method. A column of length L and pinned at both the ends is under the action of an axial compressive load P. Find the critical load by energy method if the flexural stiffness of the member varies according to EI(x)= EI ₀ 0 ≤ x ≤ L/3	A continuous beam is subjected to working loads as shown in figure below. If Mr = 80 kN-m, calculate the (true) load factor for the beam. 25 kN/m 100 kN 50 kN 25 kN/m 100 kN 50 kN A 5 m, 2Mp 2Mp Write a note on effect of axial force on plastic moment capacity of a flexural member. A column of length L and pinned at both the ends is under the action of an axial compressive load P. The flexural rigidity of the column varies uniformly from EI at either end to 2EI at the centre. Find the critical load by finite difference method. A column of length L and pinned at both the ends is under the action of an axial compressive load P. Find the critical load by energy method if the flexural stiffness of the member varies according to EI(x)= EIo 0 ≤ x ≤ L/3	A continuous beam is subjected to working loads as shown in figure below. If $M_P = 80$ kN-m, calculate the (true) load factor for the beam. 25 kN/m 100 kN 50 kN A 5 m, $2M_P$ B $2M_P$ M_P M_P Write a note on effect of axial force on plastic moment capacity of a flexural member. A column of length L and pinned at both the ends is under the action of an axial compressive load P. The flexural rigidity of the column varies uniformly from EI at either end to 2EI at the centre. Find the critical load by finite difference method. A column of length L and pinned at both the ends is under the action of an axial compressive load P. Find the critical load by energy method if the flexural stiffness of the member varies according to EI(x)= EI_0 $0 \le x \le L/3$	A continuous beam is subjected to working loads as shown in figure below. If Mp = 80 kN-m, calculate the (true) load factor for the beam. 25 kN/m 100 kN 50 kN A 5 m, 2Mp B 2Mp Mp Write a note on effect of axial force on plastic moment capacity of a flexural member. A column of length L and pinned at both the ends is under the action of an axial compressive load P. The flexural rigidity of the column varies uniformly from EI at either end to 2EI at the centre. Find the critical load by finite difference method. A column of length L and pinned at both the ends is under the action of an axial compressive load P. Find the critical load by energy method if the flexural stiffness of the member varies according to EI(x)=EI0 0 ≤ x ≤ L/3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andhari (W) Mumbai - 400058

Q6(a)	For a beam column with simple supports at the end, derive the expression for transverse deflection at any section when subjected to a transverse load of w/m (udl) and an axial load of P at its both ends. Also determine the maximum deflection and maximum bending moment.	(12)	3	3,4	2.2.3
Q6(b)	What are the factors on which the lateral buckling of a beam depends?	(04)	4	2	1.3.1
Q6(c)	Write the expression for the warping torsion and explain the terms involved.	(04)	4	2	1.3.1
Q7(a)	Derive the governing differential equation for the torsional buckling of column with symmetrical cross-section.	(14)	4	1,2,	1.3.1 2.1.3
Q7(b)	Explain in case of a thin walled open cross section subjected to axial load, what are the possible modes of buckling if the cross section is (i) symmetrical about two perpendicular axes (ii) symmetrical about one axis (iii) unsymmetrical	(06)	4	1,2	1.3.1 2.1.3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

RE EXAMINATION FEBRUARY 2024

Program: M. TECH (STRUCTURES) Serve I

Course Code: EC-MST(125)

Course Name: Advanced solid Mechanics

Duration: 3 HR

Maximum Points: 100

Semester: I

16/2/m

Q.No.	Questions	Points	СО	BL	М
1 a	The state of strain at a point is given by $\varepsilon x = 0.003$,				
	$\epsilon y = -0.002$, $\epsilon z = 0$, $\gamma x y = 0.002$, $\gamma y z = 0.003$, $\gamma z x = -0.004$.		le le		
	Determine the stress tensor at this point using material				
	property matrix approach	10	1	3	1
	Take $E = 210 \text{ x} 10^6 \text{ kN/m}^2$ Poisson's ratio = 0.28.				
1 b	Explain various failure theories in brief.				
		10	1	3	7
2	The stress field at a point with respect to X, Y, Z				
	coordinate system is given by the array in MPa as				
	6 8 2				
	8 6 5				
	2 5 10	20	1	3	1
	Show that by transformation of axis by 45° about the Z				[
	axis in the anticlockwise direction, the stress invariants				
	remain unchanged. Also find principal stresses also				
3	For a rectangular beam, length L, width 2b, depth 2h, subjected to a pure couple M along its length 2b	20	2	3	3
	M (0) 2h (+)X (+)Y				
İ	Consider a second order polynomial such that its any term				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

RE EXAMINATION FEBRUARY 2024

	RE EXAMINATION FEBRUARY 202	24			
	gives only a constant state of stress				-
	$/2 + b2 xy + c2y^2 / 2$				
	Calculate stresses in beam and show that $\sigma x = My/I$				
4	For the cantilever beam shown determine the	 			
	displacement field due to bending only. Consider the cross				
	section of beam to be rectangular and thin so that				
	deflections are not functions of z.				
		20	3	3	6
	The stiffness of the beam is Elz and poisson's ratio v.				
	Span of beam = L m.				
	Determine the shear stress and angle of twist of the multicell given in figure subjected to torque 5 x 10 5 Nm. E = 72 GPa. And υ =0.33	14	3	3	5
b	Derive equation of shear stress for a solid circular section of diameter D subjected to torque T				
		06	2	3	5
	Determine the location of shear centre "e" for the cross section shown. All dimensions are in mm	12	3	3	5

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

RE EXAMINATION FEBRUARY 2024

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

ENDSEMESTER EXAMINATION DECEMBER 2023

Program: M. TECH (STRUCTURES) Levy I

Course Name: Advanced solid Mechanics

Course Code: EC-MST123

Duration: 3 HR

Maximum Points: 100

Semester: I

Notes	: Solve any 5 questions.		×	ζ(11 '	
Q.No.	Questions	Points	СО	BL	PI
1 (a)	The state of stress in Mpa at a point is given by $ \begin{bmatrix} 12 & -10 & 08 \\ -10 & 08 & 04 \\ 08 & 04 & 15 \end{bmatrix} $ Determine the strain tensor at this point. Using material constant matrix. Take $E = 2 \times 10^5$ N/ mm ² Poisson's ratio = 0.28.	08	1	3	
1(b)	A Plane Stress element in a part made of the 6061-T6 is found to have the following stress: $\sigma_x = 39 \text{ Mpa}$; $\sigma_y = 68.2 \text{ Mpa}$, and $\tau_{xy} = 34.5 \text{ Mpa}$. The Axial Yield Strength, Sy, of 6061-T6 aluminum is 241 Mpa, and its Shear Yield Stress, τ_Y , is 165 Mpa. Determine (a) Factor of Safety using Tresca Criterion. (b) Factor of Safety using von Mises Criterion.	12	3	3 -	
2(a)	Consider a rectangular beam, length L, width 2b, depth 2h, subjected to a pure couple M along its length as shown in the Figure. If Airy's stress function used is $\emptyset = a2\frac{x^2}{2} + b2 \times xy + c2\frac{y^2}{2}$ Show that $\sigma x = \frac{My}{I}$	12	2	3	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

ENO SEMESTER EXAMINATION DEC 2023

			023		
2(b)	If a displacement field is described by $u = (-x^2 + 2y^2 + 6xy)10^{-4}$ $v = (3x + 6y - y^2)10^{-4}$ Determine εx , εy , τy at the point $\tau = 1$, $\tau = 0$.	08	1	3	
3	The stress field at a point with respect to X, Y, Z coordinate system is given by the array in MPa as \[\begin{array}{c} 45 & 16 & 18 \\ 16 & 12 & -15 \\ 18 & -15 & 10 \end{array} \] Calculate principal stresses and direction cosine associated with maximum value of stress	20	1	3	
4(a)	Prove that to convert a plane strain solution to a plane stress solution you substitute $1+2\frac{1}{(1+1)^2}$ $E = \frac{1}{(1+1)}$ For E and 1 respectively.	08	2	3	1
4(b)	For the beam shown determine the displacement field due to bending only. Consider the cross section of beam to be rectangular and thin so that deflections are not functions of z. The stiffness of the beam is EIz and poisson's ratio v.	12	2	3	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION. DEC 2023

	L () SEVIESTER EXAMINATION.	DECE			
5 (a)	A tubular section having three cells as shown in the figure is subjected to a torque of 121 kN-m. Determine the shear stresses developed in the walls of the section 254 254 10.8 4 10.8 All dimensions in mm	08	3	3	
5 (b)	The cross section of a beam is bending about Z axis and transmitting transverse shear force Vy=2 kn. If the transverse shear force is acting through shear centre, determine the shear distribution in walls and location of shear centre "e". wall thick ness t= 3mm for all walls	12	3	3	
6(a)	Determine the location of shear centre "e" for the cross section shown from first principle. All dimensions are in mm and thickness of walls is 4 mm.	12	n	3	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION DEC 2023

6 (b)	For the given cable arrangement calculate deflection of point B in vertical and horizontal direction using complementary theorem Area of barts 3m = 800mm² E = 2x105 N/mm 20KN	08	3	3	
7	For plate loaded in tension by force per unit area σ, is having circular hole at centre. Outer diameter of the plate is very large compared to diameter of hole 2a. Use Derive equation for σr, σ and τ	20	2	4	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End semester exam - December 2023 Examinations

Program: M. Tech Civil Engineering - Structures July

Course Code: VA-MST01

Course Name: Adv. Earthquake Resistant design

Notes:Draw neat sketches to support your answers;

Assume suitable data if missing and state the same clearly.

Duration: 3 Hours

Maximum Points: 100

Semester: 3

MIN N

Q.No.	Questions	Points	со	BL	Module
1	Explain the differences in force based design, capacity based design and performance based design	20	01	02	01
	The moment curvature curve of beam shown in Fig. below determine the following quantities 1. Flexural Stiffness 2. Deflection at the mid span and quarter span on the beam along the length 3. Strain in the bottom of steel 4. Crack Spacing				
	It is given that: fck= 40 MPa, fy = 500 MPa, and crack width of 0:50 mm.				
	MA				•
2.a	# 2.5 m + 2.5 m + 500 400 400 400 400 100 100 100 1	12	02	04	02
2.b	Explain the concept of modeling hinges for non-linear analysis	08	02	02	02
3.	Explain in detail the material ductility, sectional ductility and structural ductility and their impact on pushover analysis results. What are the structural properties that can be understood from Pushover curve?	20	03	03	03
4	A cantilever bridge column that is 11.5 m tall to the center of the superstructure mass is to be designed for a region of PGA = 0.36 g using DDBD principles. The bridge is founded on firm ground and the spectral shape for the 5%	20	2 3	04	04

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End semester exam - December 2023 Examinations

damping displacement spectrum can be scaled from Figure as shown. On the basis of preliminary design, a circular column of 2.45 m has been selected, and the reinforcement yield strength is fy = 500 MPa . The design limit state is represented by the more critical of a displacement ductility of μ = 3, or a drift of θ_d = 0.035. The tributary weight contributing to seismic inertia of the column is 5400 kN. E_s = 200 GPa. Determine the base shear attracted using DDBD principles

$$R_{\xi} = \left(\frac{0.07}{0.02 + \xi}\right)^{0.5}$$

$$K_{\rm e} = \frac{4\pi^2 m_{\rm e}}{T_{\rm e}^2}$$

Consider:

Concrete Bridge Columns and Walls: $\xi_{eq} = 0.05 + 0.444 \left(\frac{\mu - 1}{\mu \pi}\right)$

Also determine the Base shear attracted using Force based design principles for the response spectrum shown below -

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End semester exam - December 2023 Examinations

5	Explain the need for P-delta analysis and its impact on slender structures	20	03	03	04
6.a	Explain the various performance limits IO,LS and CP	10	03	03	05
6.b	Explain the impact of considering infill walls in dynamic analysis of structures	10	03	03	06
7	Write short notes on : A) Base isolation systems B) Dampers	20	03	03	07

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Term End EXAMINATIONS - JAN 2024

Jun I 8M2024 Moul (Sh) Duration: 2 Hrs

Course Code-IK-MTSE101. Maximum Points: 50

Course Name: Indian Knowledge System Course Sem-I

Program: F.Y.M.Tech (SE/PE)

Instructions: Attempt Any Five Questions Date: 8/01/2024

Q.No.	Questions	Points	CO	BL	PI
1 (A)	Choose the correct alternatives from the following:	05	3	5	6.1.1
	1) The objective resolution was put up before constituent assembly by- a) Dr.B.R Ambedkar b) Sardar Patel c) Jawaharlal Nehru d) K.M Munshi.			+	
	2) The provisions of fundamental rights are influenced by the constitution of-				
	a) England b) USA c) Canada d) Australia				
	The chairman of drafting committee of Constituent Assembly was:				
	a) K.T Shah b) Sir B.N Rao c) Dr. Ambedkar d) C.				
	Rajgopalachari				
	4) The words socialist, secular and integrity are inserted				
	into preamble by amendment.				
	a) 44th b) 38th c) 24th d) 42nd				
	5) Constituent assembly adopted and enacted the constitution on1949.				
	a) 26 th January b) 26 th November c) 26 th July d) 26 th October.				

(B)	Attempt the following:	05	2	4	6.2.1
	1) Define the term secular.			ļ	
	2) What is the preamble to the constitution?				
	3) Justify the concept Judicial review.				
	4) Explain the term constitution.				
	5) What is meant by Welfare state?				
Q2	Discuss the keywords enshrined in the preamble.	10	1	2	6.1.1
Q3	Analyse the features and provisions of fundamental rights.	10	3	4	6.1.1
Q4	Explain the multifunctional role of Indian Parliament.	10	3	1	8.2.2
Q5	Describe the salient features of Indian constitution.	10	2	1	6.2.1
Q6	Narrate the classification of directive principles of state policy.	10	1	3	8.1.1
Q7	Write a note on the following (Any One) a. Reservation Policy in India b. Uniform Civil Code	10	2	4	6.1.2