Bharatiya Vidya Bhavan's
 Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058.
End Semester Exam, DEC2023
On. $(1 \mathrm{Mn}(5 \mathrm{r}-62) \mathrm{LeM})$ Duration: 3 hrs
Max. Marks :100

MTech Programme SEM-1	Construction Management	Structural Engineering	Power Electronics and Power Systems
Course Code of Research Methodology	PC-MTCM103	PC-MTSE103	PC-MTPX103

Instructions:

1. Question No I is compulsory.
2. Attempt any four questions out of remaining six.
3. Draw neat diagrams
4. Assume suitable data if necessary

5. Use of Standard Tables permitted

	what a you mean oy stratmeanon? Why it ts to be done7 Explain How do you carry out stratification using computer? Refer the given data, Identify the vital factor to control defects.					$\begin{aligned} & \hline \hline \mathrm{CO1} \\ & \mathrm{CO} 2 \end{aligned}$	M3 M5 M 7
Q4B	A data of 350 Life Cycle Test association between type of mach response by Type of machine suggest an association between T and R ?	achines was ines and acce re as follow ype of machi	collected and analy eptability of Guage w. At alpha $=0.05$ ine and acceptability	to know nd R. The these data f Guage R Total 50 302 352	10	$\begin{array}{\|l\|} \hline \mathrm{CO} 2 \\ \mathrm{CO} 3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M3 } \end{array}$
Q5A	What do you mean by Causal Relationship? Explain the usage of the tools with appropriate examples for depicting causal relationships. What do you mean by regression analysis? Explain coefficient of correlation, scatter diagram, $\mathbf{R}^{\mathbf{2}}, \mathbf{R}^{2}$ adj.				10	$\begin{array}{\|l\|} \hline \mathrm{CO} 2 \\ \mathrm{CO} 3 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{Ml} \\ & \mathrm{M} 5 \end{aligned}$
Q5B	Write short note on the following terms. I. Normal Distribution II. Type I error III. Type II error IV. Confidence Interval V. Level of Significance VI. Test Statistic VII. T distribution VIII. F distribution IX. Census X. Sampling				10	$\begin{aligned} & \mathrm{COZ} \\ & \mathrm{CO} \end{aligned}$	$\begin{aligned} & \text { M4 } \\ & \text { M5 } \end{aligned}$
Q6A	A flow chart describing copyright registration process in India.				10	$\begin{array}{\|l\|} \hline \mathrm{CO} 2 \\ \mathrm{CO} 3 \\ \hline \end{array}$	M5
Q6B	Differentiate among Patent Trademark and Copyright.				10	$\begin{array}{\|l\|} \hline \mathrm{CO} 2 \\ \mathrm{CO} 3 \end{array}$	$\begin{aligned} & \text { M6 } \\ & \text { M7 } \end{aligned}$
Q7A	Prepare the process flow chart for obtaining patent in India				10	$\begin{array}{\|l\|} \hline \mathrm{CO} 2 \\ \mathrm{CO} 3 \\ \hline \end{array}$	$\begin{aligned} & \text { M6 } \\ & \text { M7 } \end{aligned}$
Q7B	Prepare a note on Trademark based on following points 1.Meaning 2.Examples 3.Period 4. Specific rules in India 5.Procedure to get the trademark registered and approved.				10	$\begin{array}{\|l\|} \hline \mathrm{CO} 2 \\ \mathrm{CO} 3 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{M} 6 \\ & \text { M7 } \end{aligned}$

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai- 400058

END SEM EXAMINATION December 2023

Program: M.Tech- Structures
Course Code: PC-MST 102
Course Name: Advanced Theory of Structures
Semester:I

Duration: 3 Hrs
Maximum Points: 100

Bharatiya Vidya Bhavan's
SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munshi Nagar, Andhert (W) Mumbai- 400058

END SEM EXAMINATION December 2023

Program: M.Tech Civil Engineering - Structures $\mathcal{L C L I}$ Duration: 3 Hours
Course Code: PE-MTSE113
Course Name: Design of Prestressed Concrete Structures
Notes:

- Attempt any 5 main questions.
- Answers to all sub-questions should be grouped together
- Draw neat sketches wherever possible
- Assume suitable data if missing and state the same clearly.
- Use of IS 1343 is allowed

Q.No.	Questions	Points	CO	BL	Module
1.a)	A prestressed concrete beam ABC has cross section dimensions $350 \times 800 \mathrm{~mm}$ and effective prestressing force of 1000 kN . The beam has a simply supported span(i.e. $B C$) of 7 m and it has 2.5 m overhang on one side (i.e. $A B$).It carries a live load of $10 \mathrm{kN} / \mathrm{m}$ on entire span. Using load balancing concept, determine the eccentricities at critical points to balance the dead load and live load and sketch the cable profile. (Consider density of concrete as $25 \mathrm{kN} / \mathrm{m}^{3}$)	10	1	3	02
1.b)	Explain in detail - Full, limited and partial prestressing	05	1	1,2	01
1.c)	Explain the need of high strength materials in prestressed concrete structures	05	1	1,2	01
2.a)	Calculate the flexural capacity of a post-tensioned (bonded) I girder having the following properties: Flange $=(1200 \times 250) \mathrm{mm}$ $\mathrm{Web}-(300 \times 1800) \mathrm{mm}$ Area of cables $=2500 \mathrm{~mm}^{2}$ $\mathrm{fp}=1600 \mathrm{MPa}$ Effective depth $=2050 \mathrm{~mm}$ fck $=40 \mathrm{MPa}$	10	1	3	03
2.b)	Design the shear reinforcement at quarter span for a simply supported beam of rectangular cross section 300 mmx 900 mm and span 12.5 m . It carries a live load UDL of $7 \mathrm{kN} / \mathrm{m}$ (unfactored). It is prestressed by a straight cable that is having eccentricity of 250 mm	10	2	4	03

Munshl Nagar. Alldheri (W) Mumbai - 400058

End Semester Examination - December 2023
fck $=40 \mathrm{MPa}$
Effective prestress in cable $=1100 \mathrm{MPa}$ Characteristic strength of PT steel $=1600 \mathrm{MPa}$ Use Fe 415 grade steel for reinforcement.

A simply supported post tensioned beam of span 18 m with 2 cables having a cross section of 300 mmX 1000 mm is successively tensioned from a single end in the order of cables 1-2.

Each cable has a cross section area of $300 \mathrm{~mm}^{2}$ and an initial tension of 1200 MPa . Co-efficient for friction $=0.5$; co-efficient for wave effect $=0.0015 / \mathrm{m}$. Age of concrete at transfer of prestress $=28$ days. Anchorage slip $=$ 4.2 mm . Es $=210 \mathrm{kN} / \mathrm{mm}^{2}, \mathrm{Ec}=30 \mathrm{kN} / \mathrm{mm}^{2}$.

Calculate the \% losses due to elastic shortening, friction and anchorase slip
The end block of a post-tensioned beam has two anchorages with $300 \times 300 \mathrm{~mm}$ - square bearing plates located at 350 mm from top and bottom respectively. The size of end block is $300 \times 600 \mathrm{~mm}$. An initial pre-stressing force of 800 kN is applied to each anchorage. Design the end zone reinforcement.
Design a Type 1 post tensioned bonded girder (simply supported) for the following data :
Effective span - 15 m
Live load $=10 \mathrm{kN} / \mathrm{m}$
fck $=45 \mathrm{MPa}$
$\mathrm{fci}-30 \mathrm{MPa}$
4. $E s=210 \mathrm{kN} / \mathrm{mm}^{2}$
$\mathrm{Ec}=31.6 \mathrm{kN} / \mathrm{mm}^{2}$
Assumed loss $\%=25 \%$
Use $8 \mathrm{~mm} \phi$ strands for cables. The characteristic strength of cables is 1500 MPa . Calculate the size of section required, prestressing force, eccentricity. Draw neat sketch of the cable profile
A 15 m span simply supported composite beam consists of
5.a) $250 \mathrm{~mm} \times 750 \mathrm{~mm}$ precast stem and a cast-in-situ flange of 900 mmX 200 mm . The stem is a post tensioned unit subjected to a prestressing force of 1000 kN . The tendons
(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai-400058
End Semester Examination - December 2023

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Munbai - 400058
Re-exam Feb 2024
Program: M.Tech Civil Engineering - Structures Leul I Duration: 3 Hours
Course Code: PE-MTSE113
Course Name: Design of Prestressed Concrete Structures
Notes:

- Attempt any 5 main questions.
- Answers to all sub-questions should be grouped together
- Draw neat sketches wherever possible
- Assume suitable data if missing and state the same clearly.
- Use of IS 1343 is allowed

Q.No.	Questions	Points	CO	BL	PI
1	a) What is pretensioning and post-tensioning? b) Explain how prestressing affects deflection of beams. What are the factors affecting long term deflection? c) Explain what do you mean by fuil prestressing, limited prestressing and partial prestressing d) Calculate the stress in extreme fibres at support for a cantilever beam having 5 m span, (250×500) mm cross section and supporting a UDL of $15 \mathrm{kN} / \mathrm{m}$ on full span. It is prestressed with a straight cable having eccentricity 250 mm above the CG.	20	1	1,2	2.2.4
2.a)	A pretensioned concrete beam of size $250 \mathrm{~mm} \times 600 \mathrm{~mm}$ has an effective cover to tendon 200 mm . Area of prestressing steel is 565 mm 2 , fck $=40 \mathrm{~N} / \mathrm{mm} 2, \mathrm{fp}=$ $1600 \mathrm{~N} / \mathrm{mm}^{2}$. Calculate the ultimate flexural strength of the section. fck $=40 \mathrm{MPa}$	10	1	3	3.1.4
2.b)	Design the shear reinforcement at one third span for a simply supported beam of rectangular cross section $300 \mathrm{~mm} \times 700 \mathrm{~mm}$ and span 10 m . It carries a live load UDL of $8 \mathrm{kN} / \mathrm{m}$ (unfactored). It is prestressed by a straight cable that is having eccentricity of 250 mm $\mathrm{fck}=40 \mathrm{MPa}$ Effective prestress in cable $=1100 \mathrm{MPa}$ Characteristic strength of PT steel $=1600 \mathrm{MPa}$ Use Fe415 grade steel for reinforcement.	10	2	4	3.1.4

(Goverument Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
Re-exam - Feb 2024

3.a)	a) A simply with 2 ca is success cables 1-2 Cable 1 Cable 2 Each cable initial tens co-efficien at transfer Es - 210 k Calculate and ancho b) Calcula support du on full spa	Each cable has a cross section area of $350 \mathrm{~mm}^{2}$ and an initial tension of 1200 MPa . Co-efficient for friction $=0.5$; co-efficient for wave effect $=0.0015 / \mathrm{m}$. Age of concrete at transfer of prestress $=28$ days. Anchorage slip $=4 \mathrm{~mm}$. Es $-210 \mathrm{kN} / \mathrm{mm}^{2}, \mathrm{Ec}=30 \mathrm{kN} / \mathrm{mm}^{2}$. Calculate the \% losses due to elastic shortening, friction and anchorage slip b) Calculate the stress in extreme fibres at mid span and support due to prestress and an imposed load of $10 \mathrm{kN} / \mathrm{m}$ on full span			15	1	3	2.2.1
	c) Explain the difference between shear resistance of a PSC beam as compared to that of an RCC beam				05	1,3	2	1.4.1
4.	Design a Type 1 pretensioned bonded girder (simply supported) for the following data : Effective span $=14 \mathrm{~m}$ Live load $=18 \mathrm{kN} / \mathrm{m}$ $\mathrm{fck}=40 \mathrm{MPa}$ $\mathrm{fci}=30 \mathrm{MPa}$ $\mathrm{Es}=210 \mathrm{kN} / \mathrm{mm}^{2}$ $\mathrm{Ec}=31.6 \mathrm{kN} / \mathrm{mm}^{2}$ Assumed loss $\%=30 \%$ Use $8 \mathrm{~mm} \phi$ strands for cables. The characteristic strength of cables is 1300 MPa . Calculate the size of section required, prestressing force, eccentricity with safe cable zone. Draw neat sketch of the cable profile				20	2	4	3.1.4 3.2.1
5.a)	A 14 m span simply supported composite beam consists of 250 mmX 600 mm precast stem and a cast-in-situ flange of 500 mmX 300 mm . The stem is a post tensioned unit subjected to an initial prestressing force of 800 kN . \%loss $=26.5 \%$. The tendons are provided at 150 mm from the soffit of stem. The beam has to support a live load of $10 \mathrm{kN} / \mathrm{m}$. Determine the resultant stress distribution in the beam if the beam is a) unpropped; b) propped				20	1	3	2.2.1

Re-exam - Feb 2024

	Draw neat sketches to show the variations of stresses at each stage				
6.a)	Derive the expression for deflection due to prestress when the profile is parabolic having zero eccentricity at ends and "e" at mid span for a simply supported beam A simply supported prestressed beam of cross section $450 \mathrm{~mm} \times 1100 \mathrm{~mm}$ and span 15 m has a straight profile of cable with eccentricity of 400 mm below N.A. It carries a live load of $5 \mathrm{kN} / \mathrm{m}$. The area of cable is $400 \mathrm{~mm}^{2}$ and it is initially tensioned to $1350 \mathrm{~N} / \mathrm{mm}^{2}$. $\%$ loss $=28 \%$ Calculate the : i) Instantaneous deflection due to dead load + prestressing force ii) Long term deflection if the creep coefficient is 1.6 $\mathrm{Es}=210 \mathrm{kN} / \mathrm{mm}^{2} ; \mathrm{Ec}=35 \mathrm{kN} / \mathrm{mm}^{2}$	10	1	3	2.2.1 1.4
6.b)	The end block of a post-tensioned beam has three anchorages with 300 mm square bearing plates as shown in figure. An initial pre-stressing force of 900 kN is applied to each anchorage. Design the end zone reinforcement.	10	2	4	3.1.4 3.1.6
7.a)	The cable profile for a two span continuous beam is as shown in figure below. The prestressing force is 1250 kN . Locate the pressure line due to prestressing force and the shown loads	20	3	4	2.3 .2 1.4 .1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Murnbai - 400058
End Semester Examinations- December 2023
Program: M.Tech. (Structural Engineering) LeM \mathbb{L}
Course Code: PE-MTSE121
Course Name: Program Elective-II: Non Linear Analysis

Instructions:

- Attempt any FIVE questions out of SEVEN questions.
- Answers to all sub questions should be grouped together.
- Figures to the right indicate full marks.
- Assume suitable data if necessary and state the same clearly.

Q.No	Questions	Points	CO	BL	PI
Q1(a)	State and explain uniqueness theorem used in plastic analysis.	(05)	1	1,2	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q1(b)	What are the secondary design problems to be considered while using the plastic theory of bending?	(05)	2	2	$\begin{aligned} & 2.1 .2 \\ & 2.2 .3 \end{aligned}$
Q1(c)	What is a beam column? How is it different from a beam and a column?	(05)	3	2	1.3.1
Q1(d)	Write a note on the modes of buckling of a member having thin walled symmetrical cross section.	(05)	4	2	1.3.1
Q2(a)	Find the length of the plastic hinge for a simply supported beam of rectangular cross section and span L, subjected to a central point load of W. Also show that the shape/variation of plastic hinge in the above case is a parabola.	(10)	1	3,4	2.1 .2
Q2(c)	Find the shape factor of an unsymmetrical I section with following details: Top flange width $=\mathbf{2 5 0} \mathbf{~ m m ~ \& ~ t h i c k n e s s ~}=\mathbf{2 5} \mathbf{~ m m}$ Bottom flange width $=350 \mathrm{~mm}$ \& thickness $=\mathbf{3 5} \mathrm{mm}$ Depth of web $=\mathbf{3 0 0} \mathrm{mm}$ and thickness of web $=\mathbf{3 0} \mathbf{~ m m}$	(10)	I	3,4	$\begin{aligned} & 2.1 .3 \\ & 2.2 .3 \end{aligned}$

(Government Aided Autonamous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester Examinations- December 2023

Q3(a)	For the frame shown in figure below, find the collapse load factor. Loads shown in the figure are working loads and the plastic moment capacity of each member in $\mathrm{kN}-\mathrm{m}$ is also shown in the figure.	(15)	1	3,4	$\begin{array}{\|l} \hline 2.1 .3 \\ 2.2 .3 \end{array}$
Q3(b)	Calculate the plastic moment capacity of a beam of rectangular cross section $100 \mathrm{~mm} \times 200 \mathrm{~mm}$ if $\sigma_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$. If the cross section is subjected to an axial force such that $\mathrm{P} / \mathrm{Pp}=0.5$, find the reduced plastic moment capacity of the section. Also state the percentage loss in the plastic moment capacity of the section due to the axial force.	(05)	2	2	$\begin{aligned} & \hline 2.1 .2 \\ & 2.2 .3 \end{aligned}$
Q4(a)	A continuous beam is subjected to working loads as shown in figure below. If $\mathrm{MP}_{\mathrm{P}}=75 \mathrm{kN}-\mathrm{m}$, calculate the (true) load factor for the beam.	(10)	I	3,4	$\begin{aligned} & \hline 2.1 .3 \\ & 2.2 .3 \end{aligned}$
Q4(b)	Write a note on effect of shear force on plastic moment capacity of a flexural member.	(10)	2	${ }_{3}^{1,2,}$	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q5(a)	A column of length L and pinned at both the ends is under the action of an axial compressive load P. Find the eritical load by finite difference method if the fiexural stiffness of the member varies according to $\begin{aligned} \mathrm{EI}(\mathrm{x}) & =\mathrm{EI}_{0} & & 0 \leq \mathrm{x} \leq \mathrm{L} / 4 \\ & =2 \mathrm{EI}_{0} 0 & & \mathrm{~L} / 4 \leq \mathrm{x} \leq 3 \mathrm{~L} / 4 \\ & =\mathrm{EI}_{0} & & 3 \mathrm{~L} / 4 \leq \mathrm{x} \leq \mathrm{L} \end{aligned}$	(10)	3	3,4	$\begin{aligned} & \hline 2.2 .3 \\ & 2.4 .1 \end{aligned}$

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai --400058
End Semester Examinations- December 2023

Q5(b) A column of leugth L and pinned at both the ends is under the action of an axial compressive load P. Find the critical load by energy method if the flexural stiffiness of the member varies according to
$\mathrm{EI}(\mathrm{x})=\mathrm{El} 0 \quad 0 \leq \mathrm{x} \leq \mathrm{L} / 4$

$$
\begin{array}{ll}
=2 \mathrm{EI} 0 & \mathrm{~L} / 4 \leq \mathrm{x} \leq 3 \mathrm{~L} / 4 \\
=\mathrm{EI}_{0} & 3 \mathrm{~L} / 4 \leq \mathrm{x} \leq \mathrm{L}
\end{array}
$$

Q7(b) Write a note lateral buckling of beams
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

Re-Examinations- February 2024
Program: M.Tech. (Structural Engineering) LCM Duration: 3 Hours

Course Code: PE-MTSE121
Course Name: Program Elective-II: Non Linear Analysis

Instructions:

Maximum Points: 100
Semester: I

- Attempt any FIVE questions out of SEVEN questions.
- Answers to all sub questions should be grouped together.
- Figures to the right indicate full marks.
- Assume suitable data if necessary and state the same clearly.

(Government Aided Autonomous Institute)
Munshi Nagai, Andluri (W) Munlai - 400051

Q3	For the frame shown in figure below, find the collapse load factor. Loads shown in the figure are working loads and the plastic moment capacity of each member in $\mathrm{kN}-\mathrm{m}$ is also shown in the figure.	(20)	I	3,4	$\begin{array}{\|l} \hline 2.1 .3 \\ 2.2 .3 \\ \hline \end{array}$
Q4(a)	A continuous beam is subjected to working loads as shown in figure below. If $M_{P}=80 \mathrm{kN}-\mathrm{m}$, calculate the (true) load factor for the beam.	(10)	!	3,4	$\begin{array}{\|l\|} \hline 2.1 .3 \\ 2.2 .3 \end{array}$
Q4(b)	Write a note on effect of axial force on plastic moment capacity of a flexural member.	(10)	2	$\frac{1,2}{3}$	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q5(a)	A column of length L and pinned at both the ends is under the action of an axial compressive load P. The flexural rigidity of the column varies uniformly from EI at either end to 2EI at the centre. Find the critical load by finite difference method.	(10)	3	3,4	$\begin{array}{\|l\|} \hline 2.2 .3 \\ 2.4 .1 \end{array}$
Q5(b)	A column of length L and pinned at both the ends is under the action of an axial compressive load P. Find the critical load by energy method if the flexural stiffness of the member varies according to $\begin{aligned} \mathrm{EI}(\mathrm{x}) & =\mathrm{EI}_{0} & & 0 \leq x \leq \mathrm{L} / 3 \\ & =2 \mathrm{EI}_{0} & & \mathrm{~L} / 3 \leq x \leq 2 \mathrm{~L} / 3 \\ & =\mathrm{EI}_{0} & & 2 \mathrm{~L} / 3 \leq \mathrm{x} \leq \mathrm{L} \end{aligned}$	(10)	3	3,4	$\begin{aligned} & \hline 2.2 .3 \\ & 2.4 .1 \end{aligned}$

(Government Aided Autonomous Institute)
Munshi Najau, Aulliwi (W) Mumbai - 40005 s

Q6(a)	For a beam column with simple supports at the end, derive the expression for transverse deflection at any section when subjected to a transverse load of \mathbf{w} / m (udl) and an axial load of P at its both ends. Also determine the maximum deflection and maximum bending moment.	(12)	3	3,4	$\begin{aligned} & \hline 2.2 .3 \\ & 2.4 .1 \end{aligned}$
Q6(b)	What are the factors on which the lateral buckling of a beam depends?	(04)	4	2	1.3.1
Q6(c)	Write the expression for the warping torsion and explain the terms involved.	(04)	4	2	1.3.1
Q7(a)	Derive the governing differential equation for the torsional buckling of column with symmetrical cross- section.	(14)	4	$\begin{aligned} & 1,2, \\ & 3 \end{aligned}$	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q7(b)	Explain in case of a thin walled open cross section subjected to axial load, what are the possible modes of buckling if the cross section is (i) symmetrical about two perpendicular axes (ii) symmetrical about one axis (iii) unsymmetrical	(06)	4	1,2	$\begin{aligned} & \hline 1.3 .1 \\ & 2.1 .3 \end{aligned}$

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
RE EXAMINATION FEBRUARY 2024

Program: M. TECH (STRUCTURES) SeM I
Course Code: EC-MST(125) \3
Course Name: Advanced solid Mechanics

Duration: 3 HR
Maximum Points: 100
Semester: I
1b) $\lambda \sim$

Q.No.	Questions	Points	CO	BL	M
1 a	The state of strain at a point is given by $\varepsilon x=0.003$, $\varepsilon y=-0.002, \varepsilon z=0, \gamma x y=0.002, \gamma y z=0.003, \gamma z x=-0.004$. Determine the stress tensor at this point using material property matrix approach Take $\mathrm{E}=210 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}$ Poisson's ratio $=0.28$.	10	1	3	1
1 b	Explain various failure theories in brief.	10	1	3	7
2	The stress field at a point with respect to $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ coordinate system is given by the array in MPa as 682 865 2510 Show that by transformation of axis by 45° about the Z axis in the anticlockwise direction, the stress invariants remain unchanged. Also find principal stresses also	20	1	3	1
3	For a rectangular beam, length L, width $2 b$, depth $2 h$, subjected to a pure couple M along its length Consider a second order polynomial such that its any term	20	2	3	3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

RE EXAMINATION FEBRUARY 2024

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
RE EXAMINATION FEBRUARY 2024

ENDSEMESTER EXAMINATION DECGHBER2023

Program: M. TECH (STRUCTURES)
Course Code: EC-MS 129
Course Name: Advanced solid Mechanics

Duration: 3 HR
Maximum Points: 100
Semester: I
5112

Q.No.	Questions	Points	CO	BL	PI
1 (a)	The state of stress in Mpa at a point is given by $\left[\begin{array}{ccc} 12 & -10 & 08 \\ -10 & 08 & 04 \\ 08 & 04 & 15 \end{array}\right]$ Determine the strain tensor at this point. Using material constant matrix. Take $\mathrm{E}-2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ Poisson's ratio $=0.28$.	08	1	3	
1(b)	A Plane Stress element in a part made of the 6061-T6 is found to have the following stress: $\sigma_{x}=39 \mathrm{Mpa} ; \sigma_{y}=68.2 \mathrm{Mpa} \text {, and } \tau_{x y}=34.5 \mathrm{Mpa} .$ The Axial Yield Strength, S_{Y}, of 6061-T6 aluminum is 241 Mpa , and its Shear Yield Stress, τ_{Y}, is 165 Mpa . Determine (a) Factor of Safety using Tresca Criterion. (b) Factor of Safety using von Mises Criterion.	12	3	3	
2(a)	Consider a rectangular beam, length L , width 2 b , depth 2 h , subjected to a pure couple M along its length as shown in the Figure. If Airy's stress function used is $\emptyset=a 2 \frac{x 2}{2}+\mathrm{b} 2 \mathrm{xy}+\mathrm{c} 2 \frac{y 2}{2}$ Show that $\sigma x=\frac{M y}{l}$	12	2	3	

END SEMESTER EXAMINATION DEC 2023

2(b)	If a displacement field is described by $\begin{aligned} & u=\left(-x^{2}+2 y^{2}+6 x y\right) 10^{-4} \\ & v=\left(3 x+6 y-y^{2}\right) 10^{-4} \end{aligned}$ Deternine $\varepsilon x, \varepsilon y$, Txy at the point $x=1, y=0$.	08	1	3	
3	The stress field at a point with respect to $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ coordinate system is given by the array in MPa as $\left[\begin{array}{ccc} 45 & 16 & 18 \\ 16 & 12 & -15 \\ 18 & -15 & 10 \end{array}\right]$ Calculate principal stresses and direction cosine associated with maximum value of stress	20	1	3	
4(a)	Prove that to convert a plane strain solution to a plane stress solution you substitute $\frac{1+2 x}{(1+2)^{2}} E \& \frac{1}{1+\nu}$ For E and ν respectively.	08	2	3	
4(b)	For the beam shown determine the displacement field due to bending only. Consider the cross section of beam to be rectangular and thin so that deflections are not functions of z . The stiffness of the beam is Elz and poisson's ratio v.	12	2	3	

.SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

E \because D' SEMESTER EXAMINATION DEC' 2023

Bharatya Vidya Bhavan':
SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Munbai - 400058
ENO SEMESTER EXAMINATION
DEC 2023

6 (b)	For the given cable arrangement calculate deflection of point B in vertical and horizontal direction using complementary theorem	08	3	3	
7	For plate loaded in tension by force per unit area σ, is having circular hole at centre. Outer diameter of the plate is very large compared to diameter of hole 2a. Use Derive equation for σ, σ and τ	20	2	4	

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai --- 400058

End semester exam - December 2023 Examinations

Program: M. Tech Civil Engineering - Structures

Course Code: VA-MST01
Course Name: Adv. Earthquake Resistant design
Notes:Draw neat sketches to support your answers;
Assume suitable data if missing and state the same clearly.

Duration: 3 Hours

Maximum Points: 100
Semester: 3

(Goverwment Aided Autonomons Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End semester exam - December 2023 Examinations
damping displacement spectrum can be scaled from Figure as shown. On the basis of preliminary design, a circular column of 2.45 m has been selected, and the reinforcement yield strength is $\mathrm{fy}=500 \mathrm{MPa}$. The design limit state is represented by the more critical of a displacement ductility of $\mu=3$, or a drift of $\theta_{d}-0.035$. The tributary weight contributing to seismic inertia of the column is $5400 \mathrm{kN} . \mathrm{E}_{\mathrm{s}}=200 \mathrm{GPa}$. Determine the base shear attracted using DDBD principles

$$
\begin{gathered}
R_{\xi}-\left(\frac{0.07}{0.02+\xi}\right)^{0.5} \\
K_{e}=\frac{4 \pi^{2} m_{e}}{T_{e}^{2}}
\end{gathered}
$$

Consider :
Concrete Bridge Columns and Walls: $\xi_{\text {eq }}=0.05+0.444\left(\frac{\mu-1}{\mu \pi}\right)$
Also determine the Base shear attracted using Force based design principles for the response spectrum shown below-

(Government Aided Autonomous Lostitute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End semester exam - December 2023 Examinations

5	Explain the need for P-delta analysis and its impact on slender structures	20	03	03	04
$6 . a$	Explain the various performance limits IO,LS and CP	10	03	03	05
$6 . b$	Explain the impact of considering infill walls in dynamic analysis of structures	10	03	03	06
7	Write short notes on : A) Base isolation systems B) Dampers	20	03	03	07

Bharatya Vide Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar. Andheri (W) Mumbai - 400058

Term End EXAMINATIONS - JAN 2024

Moan (Sh)

 $8 N 2 \pi 4$

Program: F.Y.M.Tech (SE/PE)
Course Code-IK-MTSE101.
Course Name: Indian Knowledge System Course
Instructions: Attempt Any Five Questions

Duration: 2 Hrs

Maximum Points: 50
SemI
Date: 8/01/2024

(B)	Attempt the following: 1) Define the term secular. 2) What is the preamble to the constitution? 3) Justify the concept Judicial review. 4) Explain the term constitution. 5) What is meant by Welfare state?	05	2	4	6.2 .1
Q2	Discuss the keywords enshrined in the preamble.	10	1	2	6.1 .1
Q3	Analyse the features and provisions of fundamental rights.	10	3	4	6.1 .1
Q4	Explain the multifunctional role of Indian Parliament.	10	3	1	8.2 .2
Q5	Describe the salient features of Indian constitution.	10	2	1	6.2.1
Q6	Narrate the classification of directive principles of state policy.	10	1	3	8.1.1
Q7	Write a note on the following (Any One) a. Reservation Policy in India b. Uniform Civil Code	10	2	4	6.1 .2

